Quick HOWTO : Ch05 : Troubleshooting Linux with syslog

来自Ubuntu中文
Oneleaf留言 | 贡献2007年7月2日 (一) 21:51的版本 (新页面: {{From|http://www.linuxhomenetworking.com/wiki/index.php/Quick_HOWTO_:_Ch05_:_Troubleshooting_Linux_with_syslog}} {{Languages|Quick HOWTO : Ch05 : Troubleshooting Linux with syslog}} = In...)
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳到导航跳到搜索

{{#ifexist: :Quick HOWTO : Ch05 : Troubleshooting Linux with syslog/zh | | {{#ifexist: Quick HOWTO : Ch05 : Troubleshooting Linux with syslog/zh | | {{#ifeq: {{#titleparts:Quick HOWTO : Ch05 : Troubleshooting Linux with syslog|1|-1|}} | zh | | }} }} }} {{#ifeq: {{#titleparts:Quick HOWTO : Ch05 : Troubleshooting Linux with syslog|1|-1|}} | zh | | }}

Introduction

There are hundreds of Linux applications on the market, each with their own configuration files and help pages. This variety makes Linux vibrant, but it also makes Linux system administration daunting. Fortunately, in most cases, Linux applications use the syslog utility to export all their errors and status messages to files located in the /var/log directory.

This can be invaluable in correlating the timing and causes of related events on your system. It is also important to know that applications frequently don't display errors on the screen, but will usually log them somewhere. Knowing the precise message that accompanies an error can be vital in researching malfunctions in product manuals, online documentation, and Web searches.

syslog, and the logrotate utility that cleans up log files, are both relatively easy to configure but they frequently don't get their fair share of coverage in most texts. I've included syslog here as a dedicated chapter to both emphasize its importance to your Linux knowledge and prepare you with a valuable skill that will help you troubleshoot all the Linux various applications that will be presented throughout the book


syslog

syslog is a utility for tracking and logging all manner of system messages from the merely informational to the extremely critical. Each system message sent to the syslog server has two descriptive labels associated with it that makes the message easier to handle.

  • The first describes the function (facility) of the application that generated it. For example, applications such as mail and cron generate messages with easily identifiable facilities named mail and cron.
  • The second describes the degree of severity of the message. There are eight in all and they are listed in Table 5-1:

You can configure syslog's /etc/syslog.conf configuration file to place messages of differing severities and facilities in different files. This procedure will be covered next.


Table 5-1 Syslog Facilities

Severity Level

Keyword

Description

0

emergencies

System unusable

1

alerts

Immediate action required

2

critical

Critical condition

3

errors

Error conditions

4

warnings

Warning conditions

5

notifications

Normal but significant conditions

6

informational

Informational messages

7

debugging

Debugging messages


The /etc/syslog.conf File

The files to which syslog writes each type of message received is set in the /etc/syslog.conf configuration file. This file consists of two columns. The first lists the facilities and severities of messages to expect and the second lists the files to which they should be logged. By default, RedHat/Fedora's /etc/syslog.conf file is configured to put most of the messages in the file /var/log/messages. Here is a sample:

*.info;mail.none;authpriv.none;cron.none           /var/log/messages

In this case, all messages of severity "info" and above are logged, but none from the mail, cron or authentication facilities/subsystems. You can make this logging even more sensitive by replacing the line above with one that captures all messages from debug severity and above in the /var/log/messages file. This example may be more suitable for troubleshooting.

*.debug                                          /var/log/messages

In this example, all debug severity messages; except auth, authpriv, news and mail; are logged to the /var/log/debug file in caching mode. Notice how you can spread the configuration syntax across several lines using the slash (\) symbol at the end of each line.

 *.=debug;\
       auth,authpriv.none;\
       news.none;mail.none     -/var/log/debug

Here we see the /var/log/messages file configured in caching mode to receive only info, notice and warning messages except for the auth, authpriv, news and mail facilities.

*.=info;*.=notice;*.=warn;\
       auth,authpriv.none;\
       cron,daemon.none;\
       mail,news.none          -/var/log/messages

You can even have certain types of messages sent to the screen of all logged in users. In this example messages of severity emergency and above triggers this type of notification. The file definition is simply replaced by an asterisk to make this occur.

*.emerg                         *

Certain applications will additionally log to their own application specific log files and directories independent of the syslog.conf file. Here are some common examples:

Files:

/var/log/maillog             : Mail
/var/log/httpd/access_log    : Apache web server page access logs

Directories:

/var/log
/var/log/samba                      : Samba messages
/var/log/mrtg                       : MRTG messages
/var/log/httpd                      : Apache webserver messages

Note: In some older versions of Linux the /etc/syslog.conf file was very sensitive to spaces and would recognize only tabs. The use of spaces in the file would cause unpredictable results. Check the formatting of your /etc/syslog.conf file to be safe.

Activating Changes to the syslog Configuration File

Changes to /etc/syslog.conf will not take effect until you restart syslog. Issue this command to do so:

[root@bigboy tmp]# service syslog restart

In Ubuntu / Debian systems the command would be:

root@u-bigboy:~# /etc/init.d/sysklogd restart

How to View New Log Entries as They Happen

If you want to get new log entries to scroll on the screen as they occur, then you can use this command:

[root@bigboy tmp]# tail -f /var/log/messages

Similar commands can be applied to all log files. This is probably one of the best troubleshooting tools available in Linux. Another good command to use apart from tail is grep. grep will help you search for all occurrences of a string in a log file; you can pipe it through the more command so that you only get one screen at a time. Here is an example:

[root@bigboy tmp]# grep string /var/log/messages | more

You can also just use the plain old more command to see one screen at a time of the entire log file without filtering with grep. Here is an example:

[root@bigboy tmp]# more /var/log/messages


Logging syslog Messages to a Remote Linux Server

Logging your system messages to a remote server is a good security practice. With all servers logging to a central syslog server, it becomes easier to correlate events across your company. It also makes covering up mistakes or malicious activities harder because the purposeful deletion of log files on a server cannot simultaneously occur on your logging server, especially if you restrict the user access to the logging server.


Configuring the Linux Syslog Server

By default syslog doesn't expect to receive messages from remote clients. Here's how to configure your Linux server to start listening for these messages.

As we saw previously, syslog checks its /etc/syslog.conf file to determine the expected names and locations of the log files it should create. It also checks the file /etc/sysconfig/syslog to determine the various modes in which it should operate. Syslog will not listen for remote messages unless the SYSLOGD_OPTIONS variable in this file has a -r included in it as shown below.

# Options to syslogd
# -m 0 disables 'MARK' messages.
# -r enables logging from remote machines
# -x disables DNS lookups on messages received with -r
# See syslogd(8) for more details

 SYSLOGD_OPTIONS="-m 0 -r"

# Options to klogd
# -2 prints all kernel oops messages twice; once for klogd to decode, and
#    once for processing with 'ksymoops'
# -x disables all klogd processing of oops messages entirely
# See klogd(8) for more details

KLOGD_OPTIONS="-2"

Note: In Debian / Ubuntu systems you have to edit the syslog startup script /etc/init.d/sysklogd directly and make the SYSLOGD variable definition become "-r".

# Options for start/restart the daemons
#   For remote UDP logging use SYSLOGD="-r"
#
#SYSLOGD="-u syslog"
SYSLOGD="-r"

You will have to restart syslog on the server for the changes to take effect. The server will now start to listen on UDP port 514, which you can verify using either one of the following netstat command variations.

[root@bigboy tmp]# netstat -a | grep syslog
udp        0      0 *:syslog                *:*
[root@bigboy tmp]# netstat -an | grep 514
udp        0      0 0.0.0.0:514             0.0.0.0:*
[root@bigboy tmp]#

Configuring the Linux Client

The syslog server is now expecting to receive syslog messages. You have to configure your remote Linux client to send messages to it. This is done by editing the /etc/hosts file on the Linux client named smallfry. Here are the steps:

1) Determine the IP address and fully qualified hostname of your remote logging host.

2) Add an entry in the /etc/hosts file in the format:

IP-address    fully-qualified-domain-name    hostname    "loghost"

Example:

192.168.1.100    bigboy.my-site.com    bigboy     loghost

Now your /etc/hosts file has a nickname of "loghost" for server bigboy.

3) The next thing you need to do is edit your /etc/syslog.conf file to make the syslog messages get sent to your new loghost nickname.

*.debug                                       @loghost
*.debug                                       /var/log/messages

You have now configured all debug messages and higher to be logged to both server bigboy ("loghost") and the local file /var/log/messages. Remember to restart syslog to get the remote logging started.

You can now test to make sure that the syslog server is receiving the messages with a simple test such as restarting the lpd printer daemon and making sure the remote server sees the messages.

Linux Client

[root@smallfry tmp]# service lpd restart
Stopping lpd: [  OK  ]
Starting lpd: [  OK  ]
[root@smallfry tmp]#

Linux Server

[root@bigboy tmp]# tail /var/log/messages
...
...
Apr 11 22:09:35 smallfry lpd: lpd shutdown succeeded
Apr 11 22:09:39 smallfry lpd: lpd startup succeeded
...
...
[root@bigboy tmp]#

Syslog Configuration and Cisco Network Devices

syslog reserves facilities "local0" through "local7" for log messages received from remote servers and network devices. Routers, switches, firewalls and load balancers each logging with a different facility can each have their own log files for easy troubleshooting. Appendix 4 has examples of how to configure syslog to do this with Cisco devices using separate log files for the routers, switches, PIX firewalls, CSS load balancers and LocalDirectors.


Logrotate

The Linux utility logrotate renames and reuses system error log files on a periodic basis so that they don't occupy excessive disk space.


The /etc/logrotate.conf File

This is logrotate's general configuration file in which you can specify the frequency with which the files are reused.

  • You can specify either a weekly or daily rotation parameter. In the case below the weekly option is commented out with a #, allowing for daily updates.
  • The rotate parameter specifies the number of copies of log files logrotate will maintain. In the case below the 4 copy option is commented out with a #, while allowing 7 copies.
  • The create parameter creates a new log file after each rotation

Therefore, our sample configuration file will create daily archives of all the logfiles and store them for seven days. The files will have the following names with, logfile being current active version:

logfile
logfile.0
logfile.1
logfile.2
logfile.3
logfile.4
logfile.5
logfile.6


Sample Contents of /etc/logrotate.conf

# rotate log files weekly
#weekly

# rotate log files daily
daily

# keep 4 weeks worth of backlogs
#rotate 4

# keep 7 days worth of backlogs
rotate 7

# create new (empty) log files after rotating old ones
create


The /etc/logrotate.d Directory

Most Linux applications that use syslog will put an additional configuration file in this directory to specify the names of the log files to be rotated. It is a good practice to verify that all new applications that you want to use the syslog log have configuration files in this directory. Here are some sample files that define the specific files to be rotated for each application.

Here is an example of a custom file located in this directory that rotates files with the .tgz extension which are located in the /data/backups directory. The parameters in this file will override the global defaults in the /etc/logrotate.conf file. In this case, the rotated files won't be compressed, they'll be held for 30 days only if they are not empty, and they will be given file permissions of 600 for user root.

/data/backups/*.tgz {

   daily
   rotate 30
   nocompress
   missingok
   notifempty
   create 0600 root root
}


Note: In Debian / Ubuntu systems the /etc/cron.daily/sysklogd script reads the /etc/syslog.conf file and rotates any log files it finds configured there. This eliminates the need to create log rotation configuration files for the common system log files in the /etc/logrotate.d directory. As the script resides in the /etc/cron.daily directory it automatically runs every 24 hours. In Fedora / Redhat systems this script is replaced by the /etc/cron.daily/logrotate daily script which does not use the contents of the syslog configuration file, relying mostly on the contents of the /etc/logrotate.d directory.

Activating logrotate

The above logrotate settings in the previous section will not take effect until you issue the following command:

[root@bigboy tmp]# logrotate -f

If you want logrotate to reload only a specific configuration file, and not all of them, then issue the logrotate command with just that filename as the argument like this:

[root@bigboy tmp]# logrotate -f /etc/logrotate.d/syslog

Compressing Your Log Files

On busy Web sites the size of your log files can become quite large. Compression can be activated by editing the logrotate.conf file and adding the compress option.

#
# File: /etc/logrotate.conf
#

# Activate log compression

compress

The log files will then start to become archived with the gzip utility, each file having a .gz extension.

[root@bigboy tmp]# ls /var/log/messages*
/var/log/messages      /var/log/messages.1.gz /var/log/messages.2.gz
/var/log/messages.3.gz /var/log/messages.4.gz /var/log/messages.5.gz
/var/log/messages.6.gz /var/log/messages.7.gz
[root@bigboy tmp]#

Viewing the contents of the files still remains easy because the zcat command can quickly output their contents to the screen. Use the command with the compressed file's name as the argument as seen below.

[root@bigboy tmp]# zcat /var/log/messages.1.gz
...
...
Nov 15 04:08:02 bigboy httpd: httpd shutdown succeeded
Nov 15 04:08:04 bigboy httpd: httpd startup succeeded
Nov 15 04:08:05 bigboy sendmail[6003]: iACFMLHZ023165: to=<[email protected]>,  delay=2+20:45:44, xdelay=00:00:02, mailer=esmtp, pri=6388168, relay=www.clematis4spiders.info. [222.134.66.34], dsn=4.0.0, stat=Deferred: Connection refused by www.clematis4spiders.info.
[root@bigboy tmp]#


syslog-ng

The more recent syslog-ng application combines the features of logrotate and syslog to create a much more customizable and feature rich product. This can be easily seen in the discussion of its configuration file that follows.


The /etc/syslog-ng/syslog-ng.conf file

The main configuration file for syslog-ng is the /etc/syslog-ng/sylog-ng.conf file but only rudimentary help on its keywords can be found using the Linux man pages.

[root@zippy tmp]# man syslog-ng.conf

Figure 5-1 has a sample syslog-ng.conf file and outlines some key features. The options section that covers global characteristics is fully commented, but it is the source, destination and log sections that define the true strength of the customizability of syslog-ng.

Figure 5-1 A Sample syslog-ng.conf File

options {

          # Number of syslog lines stored in memory before being written to files
          sync (0);

          # Syslog-ng uses queues
          log_fifo_size (1000);

          # Create log directories as needed
          create_dirs (yes);

          # Make the group "logs" own the log files and directories
          group (logs);
          dir_group (logs);

          # Set the file and directory permissions
          perm (0640);
          dir_perm (0750);

          # Check client hostnames for valid DNS characters
          check_hostname (yes);

          # Specify whether to trust hostname in the log message.
          # If "yes", then it is left unchanged, if "no" the server replaces
          # it with client's DNS lookup value.
          keep_hostname (yes);

          # Use DNS fully qualified domain names (FQDN) 
          # for the names of log file folders
          use_fqdn (yes);
          use_dns (yes);

          # Cache DNS entries for up to 1000 hosts for 12 hours
          dns_cache (yes);
          dns_cache_size (1000);
          dns_cache_expire (43200);

        };


# Define all the sources of localhost generated syslog
# messages and label it "d_localhost"
source s_localhost {
          pipe ("/proc/kmsg" log_prefix("kernel: "));
          unix-stream ("/dev/log");
          internal();
};
 
# Define all the sources of network generated syslog
# messages and label it "d_network"
source s_network {
          tcp(max-connections(5000));
          udp();
};

# Define the destination "d_localhost" log directory
destination d_localhost {
           file ("/var/log/syslog-ng/$YEAR.$MONTH.$DAY/localhost/$FACILITY.log");
};

# Define the destination "d_network" log directory
destination d_network {
          file ("/var/log/syslog-ng/$YEAR.$MONTH.$DAY/$HOST/$FACILITY.log");
};

# Any logs that match the "s_localhost" source should be logged
# in the "d_localhost" directory

log { source(s_localhost);
      destination(d_localhost);
};

# Any logs that match the "s_network" source should be logged
# in the "d_network" directory
 
log { source(s_network);
       destination(d_network);
};


In our example, the first set of sources is labeled s_localhost. It includes all system messages sent to the Linux /dev/log device, which is one of syslog's data sources, all messages that syslog-ng views as being of an internal nature and additionally inserts the prefix "kernel" to all messages it intercepts on their way to the /proc/kmsg kernel message file.

Unlike a regular syslog server which listens for client messages on UDP port 514, syslog-ng also listens on TCP port 514. The second set of sources is labeled s_network and includes all syslog messages obtained from UDP sources and limits TCP syslog connections to 5000. Limiting the number of connections to help regulate system load is a good practice in the event that some syslog client begins to inundate your server with messages.

Our example also has two destinations for syslog messages, one named d_localhost, the other, d_network. These examples show the flexibility of syslog-ng in using variables. The $YEAR, $MONTH and $DAY variables map to the current year, month and day in YYYY, MM and DD format respectively. Therefore the example:

/var/log/syslog-ng/$YEAR.$MONTH.$DAY/$HOST/$FACILITY.log

refers to a directory called /var/log/syslog-ng/2005.07.09 when messages arrive on July 9, 2005. The $HOST variable refers to the hostname of the syslog client and will map to the client's IP address if DNS services are deactivated in the options section of the syslog-ng.conf file. Similarly the $FACILITY variable refers to the facility of the syslog messages that arrive from that host.

Installing syslog-ng

The most recent syslog-ng and its companion eventlog tar files can be downloaded from the www.balabit.com website. The installation procedure is straightforward, but you will need to have the Linux gcc C programming language compiler preinstalled to be successful. Here are the steps.

1. Download the tar files from the BalaBit website. In this case we have browsed the website beforehand and know the exact URLs to use with the wget command.

[root@zippy tmp]# wget wget http://www.balabit.com/downloads/syslog-ng/2.0/src/eventlog-0.2.5.tar.gz
--12:34:17--  wget http://www.balabit.com/downloads/syslog-ng/2.0/src/eventlog-0.2.5.tar.gz
           => `eventlog-0.2.5.tar.gz'
...
...
...

12:34:19 (162.01 KB/s) - `eventlog-0.2.5.tar.gz' saved [345231]

[root@zippy tmp]# wget http://www.balabit.com/downloads/syslog-ng/2.0/src/syslog-ng-2.0.0.tar.gz
--12:24:21--  wget http://www.balabit.com/downloads/syslog-ng/2.0/src/syslog-ng-2.0.0.tar.gz
           => ` syslog-ng-2.0.0.tar.gz'
...
...
...

12:24:24 (156.15 KB/s) - ` syslog-ng-2.0.0.tar.gz' saved [383589]

[root@zippy tmp]#

2. Install the prerequisite glib libraries.

[root@zippy tmp]# yum -y install glib

3. Using the tar command we extract the files in the pre-requisite eventlog archive and then use the configure; make and make install commands to install them correctly. Pay special attention to the output of the configure command to make sure that all the pre-installation tests are passed. If not, install the packages the error messages request and then start again.

[root@zippy tmp]# tar -xzf eventlog-0.2.5.tar.gz
[root@zippy tmp]# cd eventlog-0.2.5
[root@zippy eventlog-0.2.5]# ./configure
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
...
...
...
[root@zippy eventlog-0.2.5]# make
Making all in utils
make[1]: Entering directory `/tmp/eventlog-0.2.5/utils'
sed -e "s,_SCSH_,/usr/bin/scsh," make_class.in >make_class
...
...
...
[root@zippy eventlog-0.2.5]# make install
Making install in utils
make[1]: Entering directory `/tmp/eventlog-0.2.5/utils'
make[2]: Entering directory `/tmp/eventlog-0.2.5/utils'
...
...
...
make[2]: Leaving directory `/tmp/eventlog-0.2.5'
make[1]: Leaving directory `/tmp/eventlog-0.2.5'
[root@zippy eventlog-0.2.5]#

4. The next step is to install the prerequisite glib package on your system.

[root@zippy eventlog-0.2.5]# yum -y install glib

5. Some environmental variables also need to be set prior to the installation of the syslog-ng files.

[root@zippy eventlog-0.2.5]# PKG_CONFIG_PATH=/usr/local/lib/pkgconfig/
[root@zippy eventlog-0.2.5]# export PKG_CONFIG_PATH

6. Using the tar command we extract the files in the pre-requisite syslog-ng archive and then use the configure, make clean, make and make install commands to install them correctly. In this case we the --sysconfdir directive with the configure command to make sure syslog-ng searches for its configuration file in the /etc directory. Once again, pay close attention to the pre-installation tests that the configure command executes.

[root@zippy eventlog-0.2.5]# cd /tmp
[root@zippy tmp]# tar -xzf syslog-ng-2.0.0.tar.gz
[root@zippy tmp]# cd syslog-ng-2.0.0
[root@zippy syslog-ng-2.0.0]# make clean
[root@zippy syslog-ng-2.0.0]# ./configure --sysconfdir=/etc
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
...
...
...
[root@zippy syslog-ng-2.0.0]# make; make install
Making all in src
make[1]: Entering directory `/tmp/ syslog-ng-2.0.0/src'
...
...
...
[root@zippy syslog-ng-2.0.0]#

7. The installation has template init.d/syslog-ng scripts and syslog-ng.conf files in the contribs/ directory.

[root@zippy syslog-ng-2.0.0]# ls contrib/
fedora-packaging  init.d.RedHat-7.3      init.d.SuSE
Makefile.in       rhel-packaging         syslog-ng.conf.HP-UX
syslog-ng.vim     init.d.HP-UX           init.d.solaris     
Makefile          README                 syslog2ng           
init.d.RedHat     syslog-ng.conf.RedHat  init.d.SunOS
Makefile.am       relogger.pl            syslog-ng.conf.doc  
syslog-ng.conf.SunOS
[root@zippy syslog-ng-2.0.0]#

8. Copy the versions for your operating system to the /etc/init.d and /etc , /etc/logrotate.d , /etc/sysconfig directories. The /etc/syslog-ng/ directory needs to be created beforehand. Redhat and Fedora installations have their own subdirectories contrib/.

[root@zippy syslog-ng-2.0.0]# mkdir /etc/syslog-ng/
[root@zippy syslog-ng-2.0.0]# cp contrib/fedora-packaging/syslog-ng.init \
   /etc/init.d/syslog-ng
[root@zippy syslog-ng-2.0.0]# cp contrib/fedora-packaging/syslog-ng.conf \
   /etc
[root@zippy syslog-ng-2.0.0]# cp contrib/fedora-packaging/syslog-ng.sysconfig \
   /etc/sysconfig/syslog-ng
[root@zippy syslog-ng-2.0.0]# cp contrib/fedora-packaging/syslog-ng.logrotate \
   /etc/logrotate.d/syslog-ng

Remember that you may want to customize your syslog-ng.conf file.

9. Change the permissions on your new /etc/inid.d/syslog-ng file.

[root@zippy syslog-ng-2.0.0]# chmod 755 /etc/init.d/syslog-ng


10. You need to be careful. The init.d script may refer to a syslog-ng binary file that's in an incorrect location. Find its true location and edit the script.

[root@zippy syslog-ng-2.0.0]# updatedb
[root@zippy syslog-ng-2.0.0]# locate syslog-ng | grep bin
/usr/local/sbin/syslog-ng
[root@zippy syslog-ng-2.0.0]# vi /etc/init.d/syslog-ng
...
#exec="/sbin/syslog-ng"
exec="/usr/local/sbin/syslog-ng"
...
:wq
[root@zippy syslog-ng-2.0.0]#

11. Next create the /etc/syslog-ng directory for the configuration files and the /var/log/syslog-ng directory for the log files.

[root@zippy syslog-ng-2.0.0]# chkconfig syslog off
[root@zippy syslog-ng-2.0.0]# chkconfig syslog-ng on
[root@zippy syslog-ng-2.0.0]# service syslog stop
Shutting down kernel logger: [  OK  ]
Shutting down system logger: [  OK  ]
[root@zippy syslog-ng-2.0.0]# service syslog-ng start
syslog-ng: unrecognized service
[root@zippy syslog-ng-2.0.0]#

12. The sample syslog-ng.conf file in Figure 5-1 was configured to have all directories owned by the group logs. This user group needs to be created and any users that need access to the directories need to added to this group using the usermod command. In this case the user peter is added to the group and the groups command is used to verify success.

[root@zippy tmp]# groupadd logs
[root@zippy tmp]# usermod -G logs peter
[root@zippy tmp]# groups peter
peter: users logs
[root@zippy tmp]# usermod -G logs peter

13. You can now configure syslog-ng to start on the next reboot with the chkconfig command and then use the service command to start it immediately. Remember to stop the old syslog process beforehand.

[root@zippy tmp]# service syslog stop
Shutting down kernel logger: [  OK  ]
Shutting down system logger: [  OK  ]
[root@zippy tmp]# chkconfig syslog off
[root@zippy tmp]# chkconfig syslog-ng on
[root@zippy tmp]# service syslog-ng start
Starting system logger: [  OK  ]
Starting kernel logger: [  OK  ]
[root@zippy tmp]#

14. Now, your remote hosts should log begin logging to the /var/log/syslog-ng directory. According to our preliminary configuration file, there should be sub-directories categorized by date inside it. Each of these sub-directories in turn will have directories beneath them named after the IP address and/or hostname of the various remote syslog clients and will contain files categorized by syslog facility. In this example we see that the 2005.07.09 directory as received messages from three hosts, 192.168.1.1, 192.168.1.100 and localhost.

[root@zippy tmp]# ls /var/log/syslog-ng/
2005.07.09
[root@zippy tmp]# ll /var/log/syslog-ng/2005.07.09/
drwxr-x---  2 root  logs  4096 Jul  9 17:01 192-168-1-1.my-web-site.org
drwxr-x---  2 root  logs  4096 Jul  9 16:45 192-168-1-99.my-web-site.org
drwxr-x---  2 root  logs  4096 Jul  9 23:24 LOGGER
[root@zippy tmp]# ls /var/log/syslog-ng/2005.07.09/localhost/
cron.log  kern.log  local7.log  syslog.log
[root@zippy tmp]#

Using syslog-ng your system can now be used as a much more customizable tool to help troubleshoot devices attached to your network. Each day syslog-ng will automatically create new sub-directories to match the current date and at the end of each calendar quarter the files will be moved to a special archive directory containing all the data for the previous three months. This archived data can then be periodically deleted as needed. For very large deployments, or for better searching and correlation capabilities, it is possible to send the output of syslog-ng to a SQL type database. This is beyond the scope of this book, but it is a worthwhile feature to keep in mind.

Configuring syslog-ng Clients

Clients logging to the syslog-ng server don't need to have syslog-ng installed on them, a regular syslog client configuration will suffice.


Simple syslog Security

One of the shortcomings of a syslog server is that it doesn't filter out messages from undesirable sources. It is therefore wise to implement the use of TCP wrappers or a firewall to limit the acceptable sources of messages when your server isn't located on a secure network. This will help to limit the effectiveness of syslog based denial of service attacks aimed at filling up your server's hard disk or taxing other system resources that could eventually cause the server to crash.

Remember that regular syslog servers listen on UDP port 514 and syslog-ng servers rely on port 514 for both UDP and TCP. Please refer to Chapter 14, "Linux Firewalls Using iptables", on Linux firewalls for details on how to configure the Linux iptables firewall application and Appendix I, "Miscellaneous Linux Topics", for further information on configuring TCP wrappers.

Conclusion

In the next chapter we cover the installation of Linux applications, and the use of syslog will become increasingly important especially in the troubleshooting of Linux-based firewalls which can be configured to ignore and then log all undesirable packets; the Apache Web server which logs all application programming errors generated by some of the popular scripting languages such as PERL and PHP; and finally, Linux mail whose configuration files are probably the most frequently edited system documents of all and which correspondingly suffer from the most mistakes.

This syslog chapter should make you more confident to learn more about these applications via experimentation because you'll at least know where to look at the first sign of trouble.