Python 官方简明教程 4:修订间差异
以内容'=-4. More Control Flow Tools= Besides the while statement just introduced, Python knows the usual control flow statements known from other languages, with some twists. ==-…'创建新页面 |
|||
第1行: | 第1行: | ||
=-4. More Control Flow | =-4. More Control Flow Tools(未翻译)= | ||
Besides the while statement just introduced, Python knows the usual control flow statements known from other languages, with some twists. | Besides the while statement just introduced, Python knows the usual control flow statements known from other languages, with some twists. | ||
第6行: | 第6行: | ||
Perhaps the most well-known statement type is the if statement. For example: | Perhaps the most well-known statement type is the if statement. For example: | ||
>>> x = int(input("Please enter an integer: ")) | >>> x = int(input("Please enter an integer: ")) | ||
Please enter an integer: 42 | Please enter an integer: 42 | ||
>>> if x < 0: | >>> if x < 0: | ||
... x = 0 | ... x = 0 | ||
... print('Negative changed to zero') | ... print('Negative changed to zero') | ||
... elif x == 0: | ... elif x == 0: | ||
... print('Zero') | ... print('Zero') | ||
... elif x == 1: | ... elif x == 1: | ||
... print('Single') | ... print('Single') | ||
... else: | ... else: | ||
... print('More') | ... print('More') | ||
... | ... | ||
More | More | ||
There can be zero or more elif parts, and the else part is optional. The keyword ‘elif‘ is short for ‘else if’, and is useful to avoid excessive indentation. An if ... elif ... elif ... sequence is a substitute for the switch or case statements found in other languages. | There can be zero or more elif parts, and the else part is optional. The keyword ‘elif‘ is short for ‘else if’, and is useful to avoid excessive indentation. An if ... elif ... elif ... sequence is a substitute for the switch or case statements found in other languages. | ||
第25行: | 第25行: | ||
The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration step and halting condition (as C), Python’s for statement iterates over the items of any sequence (a list or a string), in the order that they appear in the sequence. For example (no pun intended): | The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration step and halting condition (as C), Python’s for statement iterates over the items of any sequence (a list or a string), in the order that they appear in the sequence. For example (no pun intended): | ||
>>> # Measure some strings: | >>> # Measure some strings: | ||
... a = ['cat', 'window', 'defenestrate'] | ... a = ['cat', 'window', 'defenestrate'] | ||
>>> for x in a: | >>> for x in a: | ||
... print(x, len(x)) | ... print(x, len(x)) | ||
... | ... | ||
cat 3 | cat 3 | ||
window 6 | window 6 | ||
defenestrate 12 | defenestrate 12 | ||
It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable sequence types, such as lists). If you need to modify the list you are iterating over (for example, to duplicate selected items) you must iterate over a copy. The slice notation makes this particularly convenient: | It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable sequence types, such as lists). If you need to modify the list you are iterating over (for example, to duplicate selected items) you must iterate over a copy. The slice notation makes this particularly convenient: | ||
>>> for x in a[:]: # make a slice copy of the entire list | >>> for x in a[:]: # make a slice copy of the entire list | ||
... if len(x) > 6: a.insert(0, x) | ... if len(x) > 6: a.insert(0, x) | ||
... | ... | ||
>>> a | >>> a | ||
['defenestrate', 'cat', 'window', 'defenestrate'] | ['defenestrate', 'cat', 'window', 'defenestrate'] | ||
==-4.3. The range() Function== | ==-4.3. The range() Function== | ||
第46行: | 第46行: | ||
If you do need to iterate over a sequence of numbers, the built-in function range() comes in handy. It generates arithmetic progressions: | If you do need to iterate over a sequence of numbers, the built-in function range() comes in handy. It generates arithmetic progressions: | ||
>>> for i in range(5): | >>> for i in range(5): | ||
... print(i) | ... print(i) | ||
... | ... | ||
0 | 0 | ||
1 | 1 | ||
2 | 2 | ||
3 | 3 | ||
4 | 4 | ||
The given end point is never part of the generated sequence; range(10) generates 10 values, the legal indices for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different increment (even negative; sometimes this is called the ‘step’): | The given end point is never part of the generated sequence; range(10) generates 10 values, the legal indices for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different increment (even negative; sometimes this is called the ‘step’): | ||
range(5, 10) | range(5, 10) | ||
5 through 9 | |||
range(0, 10, 3) | range(0, 10, 3) | ||
0, 3, 6, 9 | |||
range(-10, -100, -30) | range(-10, -100, -30) | ||
-10, -40, -70 | |||
To iterate over the indices of a sequence, you can combine range() and len() as follows: | To iterate over the indices of a sequence, you can combine range() and len() as follows: | ||
>>> a = ['Mary', 'had', 'a', 'little', 'lamb'] | >>> a = ['Mary', 'had', 'a', 'little', 'lamb'] | ||
>>> for i in range(len(a)): | >>> for i in range(len(a)): | ||
... print(i, a[i]) | ... print(i, a[i]) | ||
... | ... | ||
0 Mary | 0 Mary | ||
1 had | 1 had | ||
2 a | 2 a | ||
3 little | 3 little | ||
4 lamb | 4 lamb | ||
In most such cases, however, it is convenient to use the enumerate() function, see Looping Techniques. | In most such cases, however, it is convenient to use the enumerate() function, see Looping Techniques. | ||
第82行: | 第82行: | ||
A strange thing happens if you just print a range: | A strange thing happens if you just print a range: | ||
>>> print(range(10)) | >>> print(range(10)) | ||
range(0, 10) | range(0, 10) | ||
In many ways the object returned by range() behaves as if it is a list, but in fact it isn’t. It is an object which returns the successive items of the desired sequence when you iterate over it, but it doesn’t really make the list, thus saving space. | In many ways the object returned by range() behaves as if it is a list, but in fact it isn’t. It is an object which returns the successive items of the desired sequence when you iterate over it, but it doesn’t really make the list, thus saving space. | ||
第89行: | 第89行: | ||
We say such an object is iterable, that is, suitable as a target for functions and constructs that expect something from which they can obtain successive items until the supply is exhausted. We have seen that the for statement is such an iterator. The function list() is another; it creates lists from iterables: | We say such an object is iterable, that is, suitable as a target for functions and constructs that expect something from which they can obtain successive items until the supply is exhausted. We have seen that the for statement is such an iterator. The function list() is another; it creates lists from iterables: | ||
>>> list(range(5)) | >>> list(range(5)) | ||
[0, 1, 2, 3, 4] | [0, 1, 2, 3, 4] | ||
Later we will see more functions that return iterables and take iterables as argument. | Later we will see more functions that return iterables and take iterables as argument. | ||
第101行: | 第101行: | ||
Loop statements may have an else clause; it is executed when the loop terminates through exhaustion of the list (with for) or when the condition becomes false (with while), but not when the loop is terminated by a break statement. This is exemplified by the following loop, which searches for prime numbers: | Loop statements may have an else clause; it is executed when the loop terminates through exhaustion of the list (with for) or when the condition becomes false (with while), but not when the loop is terminated by a break statement. This is exemplified by the following loop, which searches for prime numbers: | ||
>>> for n in range(2, 10): | >>> for n in range(2, 10): | ||
... for x in range(2, n): | ... for x in range(2, n): | ||
... if n % x == 0: | ... if n % x == 0: | ||
... print(n, 'equals', x, '*', n//x) | ... print(n, 'equals', x, '*', n//x) | ||
... break | ... break | ||
... else: | ... else: | ||
... # loop fell through without finding a factor | ... # loop fell through without finding a factor | ||
... print(n, 'is a prime number') | ... print(n, 'is a prime number') | ||
... | ... | ||
2 is a prime number | 2 is a prime number | ||
3 is a prime number | 3 is a prime number | ||
4 equals 2 * 2 | 4 equals 2 * 2 | ||
5 is a prime number | 5 is a prime number | ||
6 equals 2 * 3 | 6 equals 2 * 3 | ||
7 is a prime number | 7 is a prime number | ||
8 equals 2 * 4 | 8 equals 2 * 4 | ||
9 equals 3 * 3 | 9 equals 3 * 3 | ||
==-4.5. pass Statements== | ==-4.5. pass Statements== | ||
第123行: | 第123行: | ||
The pass statement does nothing. It can be used when a statement is required syntactically but the program requires no action. For example: | The pass statement does nothing. It can be used when a statement is required syntactically but the program requires no action. For example: | ||
>>> while True: | >>> while True: | ||
... pass # Busy-wait for keyboard interrupt (Ctrl+C) | ... pass # Busy-wait for keyboard interrupt (Ctrl+C) | ||
... | ... | ||
This is commonly used for creating minimal classes: | This is commonly used for creating minimal classes: | ||
>>> class MyEmptyClass: | >>> class MyEmptyClass: | ||
... pass | ... pass | ||
... | ... | ||
Another place pass can be used is as a place-holder for a function or conditional body when you are working on new code, allowing you to keep thinking at a more abstract level. The pass is silently ignored: | Another place pass can be used is as a place-holder for a function or conditional body when you are working on new code, allowing you to keep thinking at a more abstract level. The pass is silently ignored: | ||
>>> def initlog(*args): | >>> def initlog(*args): | ||
... pass # Remember to implement this! | ... pass # Remember to implement this! | ||
... | ... | ||
==-4.6. Defining Functions== | ==-4.6. Defining Functions== | ||
第143行: | 第143行: | ||
We can create a function that writes the Fibonacci series to an arbitrary boundary: | We can create a function that writes the Fibonacci series to an arbitrary boundary: | ||
>>> def fib(n): # write Fibonacci series up to n | >>> def fib(n): # write Fibonacci series up to n | ||
... """Print a Fibonacci series up to n.""" | ... """Print a Fibonacci series up to n.""" | ||
... a, b = 0, 1 | ... a, b = 0, 1 | ||
... while a < n: | ... while a < n: | ||
... print(a, end=' ') | ... print(a, end=' ') | ||
... a, b = b, a+b | ... a, b = b, a+b | ||
... print() | ... print() | ||
... | ... | ||
>>> # Now call the function we just defined: | >>> # Now call the function we just defined: | ||
... fib(2000) | ... fib(2000) | ||
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 | 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 | ||
The keyword def introduces a function definition. It must be followed by the function name and the parenthesized list of formal parameters. The statements that form the body of the function start at the next line, and must be indented. | The keyword def introduces a function definition. It must be followed by the function name and the parenthesized list of formal parameters. The statements that form the body of the function start at the next line, and must be indented. | ||
第165行: | 第165行: | ||
A function definition introduces the function name in the current symbol table. The value of the function name has a type that is recognized by the interpreter as a user-defined function. This value can be assigned to another name which can then also be used as a function. This serves as a general renaming mechanism: | A function definition introduces the function name in the current symbol table. The value of the function name has a type that is recognized by the interpreter as a user-defined function. This value can be assigned to another name which can then also be used as a function. This serves as a general renaming mechanism: | ||
>>> fib | >>> fib | ||
<function fib at 10042ed0> | <function fib at 10042ed0> | ||
>>> f = fib | >>> f = fib | ||
>>> f(100) | >>> f(100) | ||
0 1 1 2 3 5 8 13 21 34 55 89 | 0 1 1 2 3 5 8 13 21 34 55 89 | ||
Coming from other languages, you might object that fib is not a function but a procedure since it doesn’t return a value. In fact, even functions without a return statement do return a value, albeit a rather boring one. This value is called None (it’s a built-in name). Writing the value None is normally suppressed by the interpreter if it would be the only value written. You can see it if you really want to using print(): | Coming from other languages, you might object that fib is not a function but a procedure since it doesn’t return a value. In fact, even functions without a return statement do return a value, albeit a rather boring one. This value is called None (it’s a built-in name). Writing the value None is normally suppressed by the interpreter if it would be the only value written. You can see it if you really want to using print(): | ||
>>> fib(0) | >>> fib(0) | ||
>>> print(fib(0)) | >>> print(fib(0)) | ||
None | None | ||
It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it: | It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it: | ||
>>> def fib2(n): # return Fibonacci series up to n | >>> def fib2(n): # return Fibonacci series up to n | ||
... """Return a list containing the Fibonacci series up to n.""" | ... """Return a list containing the Fibonacci series up to n.""" | ||
... result = [] | ... result = [] | ||
... a, b = 0, 1 | ... a, b = 0, 1 | ||
... while a < n: | ... while a < n: | ||
... result.append(a) # see below | ... result.append(a) # see below | ||
... a, b = b, a+b | ... a, b = b, a+b | ||
... return result | ... return result | ||
... | ... | ||
>>> f100 = fib2(100) # call it | >>> f100 = fib2(100) # call it | ||
>>> f100 # write the result | >>> f100 # write the result | ||
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] | [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] | ||
This example, as usual, demonstrates some new Python features: | This example, as usual, demonstrates some new Python features: | ||
第204行: | 第204行: | ||
The most useful form is to specify a default value for one or more arguments. This creates a function that can be called with fewer arguments than it is defined to allow. For example: | The most useful form is to specify a default value for one or more arguments. This creates a function that can be called with fewer arguments than it is defined to allow. For example: | ||
def ask_ok(prompt, retries=4, complaint='Yes or no, please!'): | def ask_ok(prompt, retries=4, complaint='Yes or no, please!'): | ||
while True: | |||
ok = input(prompt) | |||
if ok in ('y', 'ye', 'yes'): | |||
return True | |||
if ok in ('n', 'no', 'nop', 'nope'): | |||
return False | |||
retries = retries - 1 | |||
if retries < 0: | |||
raise IOError('refusenik user') | |||
print(complaint) | |||
This function can be called in several ways: | This function can be called in several ways: | ||
* giving only the mandatory argument: ask_ok('Do you really want to quit?') | |||
* giving one of the optional arguments: ask_ok('OK to overwrite the file?', 2) | |||
* or even giving all arguments: ask_ok('OK to overwrite the file?', 2, 'Come on, only yes or no!') | |||
This example also introduces the in keyword. This tests whether or not a sequence contains a certain value. | This example also introduces the in keyword. This tests whether or not a sequence contains a certain value. | ||
第226行: | 第226行: | ||
The default values are evaluated at the point of function definition in the defining scope, so that | The default values are evaluated at the point of function definition in the defining scope, so that | ||
i = 5 | i = 5 | ||
def f(arg=i): | def f(arg=i): | ||
print(arg) | |||
i = 6 | i = 6 | ||
f() | f() | ||
will print 5. | will print 5. | ||
第238行: | 第238行: | ||
Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the arguments passed to it on subsequent calls: | Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the arguments passed to it on subsequent calls: | ||
def f(a, L=[]): | def f(a, L=[]): | ||
L.append(a) | |||
return L | |||
print(f(1)) | print(f(1)) | ||
print(f(2)) | print(f(2)) | ||
print(f(3)) | print(f(3)) | ||
This will print | This will print | ||
[1] | [1] | ||
[1, 2] | [1, 2] | ||
[1, 2, 3] | [1, 2, 3] | ||
If you don’t want the default to be shared between subsequent calls, you can write the function like this instead: | If you don’t want the default to be shared between subsequent calls, you can write the function like this instead: | ||
第264行: | 第264行: | ||
Functions can also be called using keyword arguments of the form keyword = value. For instance, the following function: | Functions can also be called using keyword arguments of the form keyword = value. For instance, the following function: | ||
def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'): | def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'): | ||
print("-- This parrot wouldn't", action, end=' ') | |||
print("if you put", voltage, "volts through it.") | |||
print("-- Lovely plumage, the", type) | |||
print("-- It's", state, "!") | |||
could be called in any of the following ways: | could be called in any of the following ways: | ||
parrot(1000) | parrot(1000) | ||
parrot(action = 'VOOOOOM', voltage = 1000000) | parrot(action = 'VOOOOOM', voltage = 1000000) | ||
parrot('a thousand', state = 'pushing up the daisies') | parrot('a thousand', state = 'pushing up the daisies') | ||
parrot('a million', 'bereft of life', 'jump') | parrot('a million', 'bereft of life', 'jump') | ||
but the following calls would all be invalid: | but the following calls would all be invalid: | ||
parrot() # required argument missing | parrot() # required argument missing | ||
parrot(voltage=5.0, 'dead') # non-keyword argument following keyword | parrot(voltage=5.0, 'dead') # non-keyword argument following keyword | ||
parrot(110, voltage=220) # duplicate value for argument | parrot(110, voltage=220) # duplicate value for argument | ||
parrot(actor='John Cleese') # unknown keyword | parrot(actor='John Cleese') # unknown keyword | ||
In general, an argument list must have any positional arguments followed by any keyword arguments, where the keywords must be chosen from the formal parameter names. It’s not important whether a formal parameter has a default value or not. No argument may receive a value more than once — formal parameter names corresponding to positional arguments cannot be used as keywords in the same calls. Here’s an example that fails due to this restriction: | In general, an argument list must have any positional arguments followed by any keyword arguments, where the keywords must be chosen from the formal parameter names. It’s not important whether a formal parameter has a default value or not. No argument may receive a value more than once — formal parameter names corresponding to positional arguments cannot be used as keywords in the same calls. Here’s an example that fails due to this restriction: | ||
>>> def function(a): | >>> def function(a): | ||
... pass | ... pass | ||
... | ... | ||
>>> function(0, a=0) | >>> function(0, a=0) | ||
Traceback (most recent call last): | Traceback (most recent call last): | ||
File "<stdin>", line 1, in ? | |||
TypeError: function() got multiple values for keyword argument 'a' | TypeError: function() got multiple values for keyword argument 'a' | ||
When a final formal parameter of the form **name is present, it receives a dictionary (see Mapping Types — dict) containing all keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal parameter of the form *name (described in the next subsection) which receives a tuple containing the positional arguments beyond the formal parameter list. (*name must occur before **name.) For example, if we define a function like this: | When a final formal parameter of the form **name is present, it receives a dictionary (see Mapping Types — dict) containing all keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal parameter of the form *name (described in the next subsection) which receives a tuple containing the positional arguments beyond the formal parameter list. (*name must occur before **name.) For example, if we define a function like this: | ||
def cheeseshop(kind, *arguments, **keywords): | def cheeseshop(kind, *arguments, **keywords): | ||
print("-- Do you have any", kind, "?") | |||
print("-- I'm sorry, we're all out of", kind) | |||
for arg in arguments: | |||
print(arg) | |||
print("-" * 40) | |||
keys = sorted(keywords.keys()) | |||
for kw in keys: | |||
print(kw, ":", keywords[kw]) | |||
It could be called like this: | It could be called like this: | ||
cheeseshop("Limburger", "It's very runny, sir.", | cheeseshop("Limburger", "It's very runny, sir.", | ||
"It's really very, VERY runny, sir.", | |||
shopkeeper="Michael Palin", | |||
client="John Cleese", | |||
sketch="Cheese Shop Sketch") | |||
and of course it would print: | and of course it would print: | ||
-- Do you have any Limburger ? | -- Do you have any Limburger ? | ||
-- I'm sorry, we're all out of Limburger | -- I'm sorry, we're all out of Limburger | ||
It's very runny, sir. | It's very runny, sir. | ||
It's really very, VERY runny, sir. | It's really very, VERY runny, sir. | ||
---------------------------------------- | ---------------------------------------- | ||
client : John Cleese | client : John Cleese | ||
shopkeeper : Michael Palin | shopkeeper : Michael Palin | ||
sketch : Cheese Shop Sketch | sketch : Cheese Shop Sketch | ||
Note that the list of keyword argument names is created by sorting the result of the keywords dictionary’s keys() method before printing its contents; if this is not done, the order in which the arguments are printed is undefined. | Note that the list of keyword argument names is created by sorting the result of the keywords dictionary’s keys() method before printing its contents; if this is not done, the order in which the arguments are printed is undefined. | ||
第330行: | 第330行: | ||
Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of arguments. These arguments will be wrapped up in a tuple (see Tuples and Sequences). Before the variable number of arguments, zero or more normal arguments may occur. | Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of arguments. These arguments will be wrapped up in a tuple (see Tuples and Sequences). Before the variable number of arguments, zero or more normal arguments may occur. | ||
def write_multiple_items(file, separator, *args): | def write_multiple_items(file, separator, *args): | ||
file.write(separator.join(args)) | |||
Normally, these variadic arguments will be last in the list of formal parameters, because they scoop up all remaining input arguments that are passed to the function. Any formal parameters which occur after the *args parameter are ‘keyword-only’ arguments, meaning that they can only be used as keywords rather than positional arguments. | Normally, these variadic arguments will be last in the list of formal parameters, because they scoop up all remaining input arguments that are passed to the function. Any formal parameters which occur after the *args parameter are ‘keyword-only’ arguments, meaning that they can only be used as keywords rather than positional arguments. | ||
>>> def concat(*args, sep="/"): | >>> def concat(*args, sep="/"): | ||
... return sep.join(args) | ... return sep.join(args) | ||
... | ... | ||
>>> concat("earth", "mars", "venus") | >>> concat("earth", "mars", "venus") | ||
'earth/mars/venus' | 'earth/mars/venus' | ||
>>> concat("earth", "mars", "venus", sep=".") | >>> concat("earth", "mars", "venus", sep=".") | ||
'earth.mars.venus' | 'earth.mars.venus' | ||
===-4.7.4. Unpacking Argument Lists=== | ===-4.7.4. Unpacking Argument Lists=== | ||
第347行: | 第347行: | ||
The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function call requiring separate positional arguments. For instance, the built-in range() function expects separate start and stop arguments. If they are not available separately, write the function call with the *-operator to unpack the arguments out of a list or tuple: | The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function call requiring separate positional arguments. For instance, the built-in range() function expects separate start and stop arguments. If they are not available separately, write the function call with the *-operator to unpack the arguments out of a list or tuple: | ||
>>> list(range(3, 6)) # normal call with separate arguments | >>> list(range(3, 6)) # normal call with separate arguments | ||
[3, 4, 5] | [3, 4, 5] | ||
>>> args = [3, 6] | >>> args = [3, 6] | ||
>>> list(range(*args)) # call with arguments unpacked from a list | >>> list(range(*args)) # call with arguments unpacked from a list | ||
[3, 4, 5] | [3, 4, 5] | ||
In the same fashion, dictionaries can deliver keyword arguments with the **-operator: | In the same fashion, dictionaries can deliver keyword arguments with the **-operator: | ||
>>> def parrot(voltage, state='a stiff', action='voom'): | >>> def parrot(voltage, state='a stiff', action='voom'): | ||
... print("-- This parrot wouldn't", action, end=' ') | ... print("-- This parrot wouldn't", action, end=' ') | ||
... print("if you put", voltage, "volts through it.", end=' ') | ... print("if you put", voltage, "volts through it.", end=' ') | ||
... print("E's", state, "!") | ... print("E's", state, "!") | ||
... | ... | ||
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"} | >>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"} | ||
>>> parrot(**d) | >>> parrot(**d) | ||
-- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised ! | -- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised ! | ||
===-4.7.5. Lambda Forms=== | ===-4.7.5. Lambda Forms=== | ||
第368行: | 第368行: | ||
By popular demand, a few features commonly found in functional programming languages like Lisp have been added to Python. With the lambda keyword, small anonymous functions can be created. Here’s a function that returns the sum of its two arguments: lambda a, b: a+b. Lambda forms can be used wherever function objects are required. They are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a normal function definition. Like nested function definitions, lambda forms can reference variables from the containing scope: | By popular demand, a few features commonly found in functional programming languages like Lisp have been added to Python. With the lambda keyword, small anonymous functions can be created. Here’s a function that returns the sum of its two arguments: lambda a, b: a+b. Lambda forms can be used wherever function objects are required. They are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a normal function definition. Like nested function definitions, lambda forms can reference variables from the containing scope: | ||
>>> def make_incrementor(n): | >>> def make_incrementor(n): | ||
... return lambda x: x + n | ... return lambda x: x + n | ||
... | ... | ||
>>> f = make_incrementor(42) | >>> f = make_incrementor(42) | ||
>>> f(0) | >>> f(0) | ||
42 | 42 | ||
>>> f(1) | >>> f(1) | ||
43 | 43 | ||
===-4.7.6. Documentation Strings=== | ===-4.7.6. Documentation Strings=== | ||
第389行: | 第389行: | ||
Here is an example of a multi-line docstring: | Here is an example of a multi-line docstring: | ||
>>> def my_function(): | >>> def my_function(): | ||
... """Do nothing, but document it. | ... """Do nothing, but document it. | ||
... | ... | ||
... No, really, it doesn't do anything. | ... No, really, it doesn't do anything. | ||
... """ | ... """ | ||
... pass | ... pass | ||
... | ... | ||
>>> print(my_function.__doc__) | >>> print(my_function.__doc__) | ||
Do nothing, but document it. | Do nothing, but document it. | ||
No, really, it doesn't do anything. | |||
==-4.8. Intermezzo: Coding Style== | ==-4.8. Intermezzo: Coding Style== |
2011年5月23日 (一) 18:07的版本
-4. More Control Flow Tools(未翻译)
Besides the while statement just introduced, Python knows the usual control flow statements known from other languages, with some twists.
-4.1. if Statements
Perhaps the most well-known statement type is the if statement. For example:
>>> x = int(input("Please enter an integer: ")) Please enter an integer: 42 >>> if x < 0: ... x = 0 ... print('Negative changed to zero') ... elif x == 0: ... print('Zero') ... elif x == 1: ... print('Single') ... else: ... print('More') ... More
There can be zero or more elif parts, and the else part is optional. The keyword ‘elif‘ is short for ‘else if’, and is useful to avoid excessive indentation. An if ... elif ... elif ... sequence is a substitute for the switch or case statements found in other languages.
-4.2. for Statements
The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration step and halting condition (as C), Python’s for statement iterates over the items of any sequence (a list or a string), in the order that they appear in the sequence. For example (no pun intended):
>>> # Measure some strings: ... a = ['cat', 'window', 'defenestrate'] >>> for x in a: ... print(x, len(x)) ... cat 3 window 6 defenestrate 12
It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable sequence types, such as lists). If you need to modify the list you are iterating over (for example, to duplicate selected items) you must iterate over a copy. The slice notation makes this particularly convenient:
>>> for x in a[:]: # make a slice copy of the entire list ... if len(x) > 6: a.insert(0, x) ... >>> a ['defenestrate', 'cat', 'window', 'defenestrate']
-4.3. The range() Function
If you do need to iterate over a sequence of numbers, the built-in function range() comes in handy. It generates arithmetic progressions:
>>> for i in range(5): ... print(i) ... 0 1 2 3 4
The given end point is never part of the generated sequence; range(10) generates 10 values, the legal indices for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different increment (even negative; sometimes this is called the ‘step’):
range(5, 10) 5 through 9
range(0, 10, 3) 0, 3, 6, 9
range(-10, -100, -30) -10, -40, -70
To iterate over the indices of a sequence, you can combine range() and len() as follows:
>>> a = ['Mary', 'had', 'a', 'little', 'lamb'] >>> for i in range(len(a)): ... print(i, a[i]) ... 0 Mary 1 had 2 a 3 little 4 lamb
In most such cases, however, it is convenient to use the enumerate() function, see Looping Techniques.
A strange thing happens if you just print a range:
>>> print(range(10)) range(0, 10)
In many ways the object returned by range() behaves as if it is a list, but in fact it isn’t. It is an object which returns the successive items of the desired sequence when you iterate over it, but it doesn’t really make the list, thus saving space.
We say such an object is iterable, that is, suitable as a target for functions and constructs that expect something from which they can obtain successive items until the supply is exhausted. We have seen that the for statement is such an iterator. The function list() is another; it creates lists from iterables:
>>> list(range(5)) [0, 1, 2, 3, 4]
Later we will see more functions that return iterables and take iterables as argument.
-4.4. break and continue Statements, and else Clauses on Loops
The break statement, like in C, breaks out of the smallest enclosing for or while loop.
The continue statement, also borrowed from C, continues with the next iteration of the loop.
Loop statements may have an else clause; it is executed when the loop terminates through exhaustion of the list (with for) or when the condition becomes false (with while), but not when the loop is terminated by a break statement. This is exemplified by the following loop, which searches for prime numbers:
>>> for n in range(2, 10): ... for x in range(2, n): ... if n % x == 0: ... print(n, 'equals', x, '*', n//x) ... break ... else: ... # loop fell through without finding a factor ... print(n, 'is a prime number') ... 2 is a prime number 3 is a prime number 4 equals 2 * 2 5 is a prime number 6 equals 2 * 3 7 is a prime number 8 equals 2 * 4 9 equals 3 * 3
-4.5. pass Statements
The pass statement does nothing. It can be used when a statement is required syntactically but the program requires no action. For example:
>>> while True: ... pass # Busy-wait for keyboard interrupt (Ctrl+C) ...
This is commonly used for creating minimal classes:
>>> class MyEmptyClass: ... pass ...
Another place pass can be used is as a place-holder for a function or conditional body when you are working on new code, allowing you to keep thinking at a more abstract level. The pass is silently ignored:
>>> def initlog(*args): ... pass # Remember to implement this! ...
-4.6. Defining Functions
We can create a function that writes the Fibonacci series to an arbitrary boundary:
>>> def fib(n): # write Fibonacci series up to n ... """Print a Fibonacci series up to n.""" ... a, b = 0, 1 ... while a < n: ... print(a, end=' ') ... a, b = b, a+b ... print() ... >>> # Now call the function we just defined: ... fib(2000) 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
The keyword def introduces a function definition. It must be followed by the function name and the parenthesized list of formal parameters. The statements that form the body of the function start at the next line, and must be indented.
The first statement of the function body can optionally be a string literal; this string literal is the function’s documentation string, or docstring. (More about docstrings can be found in the section Documentation Strings.) There are tools which use docstrings to automatically produce online or printed documentation, or to let the user interactively browse through code; it’s good practice to include docstrings in code that you write, so make a habit of it.
The execution of a function introduces a new symbol table used for the local variables of the function. More precisely, all variable assignments in a function store the value in the local symbol table; whereas variable references first look in the local symbol table, then in the local symbol tables of enclosing functions, then in the global symbol table, and finally in the table of built-in names. Thus, global variables cannot be directly assigned a value within a function (unless named in a global statement), although they may be referenced.
The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function when it is called; thus, arguments are passed using call by value (where the value is always an object reference, not the value of the object). [1] When a function calls another function, a new local symbol table is created for that call.
A function definition introduces the function name in the current symbol table. The value of the function name has a type that is recognized by the interpreter as a user-defined function. This value can be assigned to another name which can then also be used as a function. This serves as a general renaming mechanism:
>>> fib <function fib at 10042ed0> >>> f = fib >>> f(100) 0 1 1 2 3 5 8 13 21 34 55 89
Coming from other languages, you might object that fib is not a function but a procedure since it doesn’t return a value. In fact, even functions without a return statement do return a value, albeit a rather boring one. This value is called None (it’s a built-in name). Writing the value None is normally suppressed by the interpreter if it would be the only value written. You can see it if you really want to using print():
>>> fib(0) >>> print(fib(0)) None
It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:
>>> def fib2(n): # return Fibonacci series up to n ... """Return a list containing the Fibonacci series up to n.""" ... result = [] ... a, b = 0, 1 ... while a < n: ... result.append(a) # see below ... a, b = b, a+b ... return result ... >>> f100 = fib2(100) # call it >>> f100 # write the result [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
This example, as usual, demonstrates some new Python features:
* The return statement returns with a value from a function. return without an expression argument returns None. Falling off the end of a function also returns None. * The statement result.append(a) calls a method of the list object result. A method is a function that ‘belongs’ to an object and is named obj.methodname, where obj is some object (this may be an expression), and methodname is the name of a method that is defined by the object’s type. Different types define different methods. Methods of different types may have the same name without causing ambiguity. (It is possible to define your own object types and methods, using classes, see Classes) The method append() shown in the example is defined for list objects; it adds a new element at the end of the list. In this example it is equivalent to result = result + [a], but more efficient.
-4.7. More on Defining Functions
It is also possible to define functions with a variable number of arguments. There are three forms, which can be combined.
-4.7.1. Default Argument Values
The most useful form is to specify a default value for one or more arguments. This creates a function that can be called with fewer arguments than it is defined to allow. For example:
def ask_ok(prompt, retries=4, complaint='Yes or no, please!'): while True: ok = input(prompt) if ok in ('y', 'ye', 'yes'): return True if ok in ('n', 'no', 'nop', 'nope'): return False retries = retries - 1 if retries < 0: raise IOError('refusenik user') print(complaint)
This function can be called in several ways:
- giving only the mandatory argument: ask_ok('Do you really want to quit?')
- giving one of the optional arguments: ask_ok('OK to overwrite the file?', 2)
- or even giving all arguments: ask_ok('OK to overwrite the file?', 2, 'Come on, only yes or no!')
This example also introduces the in keyword. This tests whether or not a sequence contains a certain value.
The default values are evaluated at the point of function definition in the defining scope, so that
i = 5 def f(arg=i): print(arg) i = 6 f()
will print 5.
Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the arguments passed to it on subsequent calls:
def f(a, L=[]): L.append(a) return L print(f(1)) print(f(2)) print(f(3))
This will print
[1] [1, 2] [1, 2, 3]
If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:
def f(a, L=None):
if L is None: L = [] L.append(a) return L
-4.7.2. Keyword Arguments
Functions can also be called using keyword arguments of the form keyword = value. For instance, the following function:
def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'): print("-- This parrot wouldn't", action, end=' ') print("if you put", voltage, "volts through it.") print("-- Lovely plumage, the", type) print("-- It's", state, "!")
could be called in any of the following ways:
parrot(1000) parrot(action = 'VOOOOOM', voltage = 1000000) parrot('a thousand', state = 'pushing up the daisies') parrot('a million', 'bereft of life', 'jump')
but the following calls would all be invalid:
parrot() # required argument missing parrot(voltage=5.0, 'dead') # non-keyword argument following keyword parrot(110, voltage=220) # duplicate value for argument parrot(actor='John Cleese') # unknown keyword
In general, an argument list must have any positional arguments followed by any keyword arguments, where the keywords must be chosen from the formal parameter names. It’s not important whether a formal parameter has a default value or not. No argument may receive a value more than once — formal parameter names corresponding to positional arguments cannot be used as keywords in the same calls. Here’s an example that fails due to this restriction:
>>> def function(a): ... pass ... >>> function(0, a=0) Traceback (most recent call last): File "<stdin>", line 1, in ? TypeError: function() got multiple values for keyword argument 'a'
When a final formal parameter of the form **name is present, it receives a dictionary (see Mapping Types — dict) containing all keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal parameter of the form *name (described in the next subsection) which receives a tuple containing the positional arguments beyond the formal parameter list. (*name must occur before **name.) For example, if we define a function like this:
def cheeseshop(kind, *arguments, **keywords): print("-- Do you have any", kind, "?") print("-- I'm sorry, we're all out of", kind) for arg in arguments: print(arg) print("-" * 40) keys = sorted(keywords.keys()) for kw in keys: print(kw, ":", keywords[kw])
It could be called like this:
cheeseshop("Limburger", "It's very runny, sir.", "It's really very, VERY runny, sir.", shopkeeper="Michael Palin", client="John Cleese", sketch="Cheese Shop Sketch")
and of course it would print:
-- Do you have any Limburger ? -- I'm sorry, we're all out of Limburger It's very runny, sir. It's really very, VERY runny, sir. ---------------------------------------- client : John Cleese shopkeeper : Michael Palin sketch : Cheese Shop Sketch
Note that the list of keyword argument names is created by sorting the result of the keywords dictionary’s keys() method before printing its contents; if this is not done, the order in which the arguments are printed is undefined.
-4.7.3. Arbitrary Argument Lists
Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of arguments. These arguments will be wrapped up in a tuple (see Tuples and Sequences). Before the variable number of arguments, zero or more normal arguments may occur.
def write_multiple_items(file, separator, *args): file.write(separator.join(args))
Normally, these variadic arguments will be last in the list of formal parameters, because they scoop up all remaining input arguments that are passed to the function. Any formal parameters which occur after the *args parameter are ‘keyword-only’ arguments, meaning that they can only be used as keywords rather than positional arguments.
>>> def concat(*args, sep="/"): ... return sep.join(args) ... >>> concat("earth", "mars", "venus") 'earth/mars/venus' >>> concat("earth", "mars", "venus", sep=".") 'earth.mars.venus'
-4.7.4. Unpacking Argument Lists
The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function call requiring separate positional arguments. For instance, the built-in range() function expects separate start and stop arguments. If they are not available separately, write the function call with the *-operator to unpack the arguments out of a list or tuple:
>>> list(range(3, 6)) # normal call with separate arguments [3, 4, 5] >>> args = [3, 6] >>> list(range(*args)) # call with arguments unpacked from a list [3, 4, 5]
In the same fashion, dictionaries can deliver keyword arguments with the **-operator:
>>> def parrot(voltage, state='a stiff', action='voom'): ... print("-- This parrot wouldn't", action, end=' ') ... print("if you put", voltage, "volts through it.", end=' ') ... print("E's", state, "!") ... >>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"} >>> parrot(**d) -- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !
-4.7.5. Lambda Forms
By popular demand, a few features commonly found in functional programming languages like Lisp have been added to Python. With the lambda keyword, small anonymous functions can be created. Here’s a function that returns the sum of its two arguments: lambda a, b: a+b. Lambda forms can be used wherever function objects are required. They are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a normal function definition. Like nested function definitions, lambda forms can reference variables from the containing scope:
>>> def make_incrementor(n): ... return lambda x: x + n ... >>> f = make_incrementor(42) >>> f(0) 42 >>> f(1) 43
-4.7.6. Documentation Strings
Here are some conventions about the content and formatting of documentation strings.
The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not explicitly state the object’s name or type, since these are available by other means (except if the name happens to be a verb describing a function’s operation). This line should begin with a capital letter and end with a period.
If there are more lines in the documentation string, the second line should be blank, visually separating the summary from the rest of the description. The following lines should be one or more paragraphs describing the object’s calling conventions, its side effects, etc.
The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documentation have to strip indentation if desired. This is done using the following convention. The first non-blank line after the first line of the string determines the amount of indentation for the entire documentation string. (We can’t use the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent in the string literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of the string. Lines that are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence of whitespace should be tested after expansion of tabs (to 8 spaces, normally).
Here is an example of a multi-line docstring:
>>> def my_function(): ... """Do nothing, but document it. ... ... No, really, it doesn't do anything. ... """ ... pass ... >>> print(my_function.__doc__) Do nothing, but document it. No, really, it doesn't do anything.
-4.8. Intermezzo: Coding Style
Now that you are about to write longer, more complex pieces of Python, it is a good time to talk about coding style. Most languages can be written (or more concise, formatted) in different styles; some are more readable than others. Making it easy for others to read your code is always a good idea, and adopting a nice coding style helps tremendously for that.
For Python, PEP 8 has emerged as the style guide that most projects adhere to; it promotes a very readable and eye-pleasing coding style. Every Python developer should read it at some point; here are the most important points extracted for you:
- Use 4-space indentation, and no tabs.
4 spaces are a good compromise between small indentation (allows greater nesting depth) and large indentation (easier to read). Tabs introduce confusion, and are best left out.
- Wrap lines so that they don’t exceed 79 characters.
This helps users with small displays and makes it possible to have several code files side-by-side on larger displays.
- Use blank lines to separate functions and classes, and larger blocks of code inside functions.
- When possible, put comments on a line of their own.
- Use docstrings.
- Use spaces around operators and after commas, but not directly inside bracketing constructs: a = f(1, 2) + g(3, 4).
- Name your classes and functions consistently; the convention is to use CamelCase for classes and lower_case_with_underscores for functions and methods. Always use self as the name for the first method argument (see A First Look at Classes for more on classes and methods).
- Don’t use fancy encodings if your code is meant to be used in international environments. Python’s default, UTF-8, or even plain ASCII work best in any case.
- Likewise, don’t use non-ASCII characters in identifiers if there is only the slightest chance people speaking a different language will read or maintain the code.
Footnotes
- [1] Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the callee makes to it (items inserted into a list).